Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 261(Pt 2): 129922, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309403

RESUMEN

Ecological retanning agent is an effective way to solve the pollution source of leather manufacturing industry. In this study, the gelatin from chrome-containing leather shavings in the leather industry was used to realize sustainable leather post-tanning. The gelatin hydrolysate (GH) coordinated with Zr4+ or Al3+ to prepare eco-friendly retanning agents GH-Zr and GH-Al. The successful coordination between GH and metal ions was characterized by FTIR and XPS. The retanning agents were characterized by FTIR curve-fitting and circular dichroism spectroscopy. The results showed that the conformation of the secondary structure of the polypeptide became ordered and stable after coordinating with the metal ions. The particle size and weight average molecular weight of the retanning agents were ~1700 nm and ~2100, respectively, measured by nanoparticle size analyzer and gel permeation chromatography (GPC). The retanning agents were applied to retanning of chrome tanned leather and glutaraldehyde tanned leather. The abundant free amino from retanning agents can consume the free formaldehyde. Meanwhile, retanning agents can effectively improve the multiple binding sites, resulting in favorable thickening rate (>110 %) and excellent dye and fatliquor absorption rate with ~99.91 % and ~93.18 %. Thus, this strategy can provide a viable choice for solid leather waste and sustainable development of the leather industry.


Asunto(s)
Gelatina , Curtiembre , Aluminio/análisis , Circonio , Iones/análisis , Residuos Industriales/análisis
2.
Biosens Bioelectron ; 237: 115453, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37331101

RESUMEN

As one of the important means for eukaryotic cells to maintain homeostasis, autophagy allows for transporting deformed biomacromolecules and damaged organelles to lysosome for digestion and degradation. The process of autophagy entails the merging of autophagosomes and lysosomes, culminating in the breakdown of biomacromolecules. This, in turn, leads to a change in lysosomal polarity. Therefore, fully understanding the changes of lysosomal polarity during autophagy is of significance to the study of membrane fluidity and enzymatic reaction. However, the shorter emission wavelength has greatly damaged the imaging depth, thus seriously limiting its biological application. Therefore, in this work, a near infrared in and out lysosome-targeted polarity-sensitive probe NCIC-Pola was developed. The fluorescence intensity of NCIC-Pola showed an approximate 1160-fold increase when the polarity decreased under two-photon excitation (TPE). In addition, the excellent fluorescence emission wavelength (692 nm) enabled the deep imaging analysis of scrap leather induced autophagy in vivo.


Asunto(s)
Técnicas Biosensibles , Colorantes Fluorescentes , Colorantes Fluorescentes/metabolismo , Autofagia , Microscopía Fluorescente/métodos , Imagen Óptica , Lisosomas/metabolismo
3.
Ecotoxicol Environ Saf ; 259: 115053, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37224785

RESUMEN

The development of nuclear energy has led to the depletion of uranium resources and now presents the challenge of treating radioactive wastewater. Extracting uranium from seawater and nuclear wastewater has been identified as an effective strategy for addressing these issues. However, extracting uranium from nuclear wastewater and seawater is still extremely challenging. In this study, an amidoxime-modified feather keratin aerogel (FK-AO aerogel) was prepared using feather keratin for efficient uranium adsorption. The FK-AO aerogel showed an impressive adsorption capacity of 585.88 mg·g-1 in an 8 ppm uranium solution, with a calculated maximum adsorption capacity of 990.10 mg·g-1. Notably, the FK-AO aerogel demonstrated excellent selectivity for U(VI) in simulated seawater that contained coexisting heavy metal ions. In a uranium solution having a salinity of 35 g·L-1 and a concentration of 0.1-2 ppm, the FK-AO aerogel achieved a uranium removal rate of greater than 90 %, indicating its effectiveness in adsorbing uranium in environments having high salinity and low concentration. This suggests that FK-AO aerogel is an ideal adsorbent for extracting uranium from seawater and nuclear wastewater, and it is also expected that it could be used in industrial applications for extracting uranium from seawater.


Asunto(s)
Uranio , Adsorción , Aguas Residuales , Biomasa , Concentración de Iones de Hidrógeno , Agua , Queratinas
4.
Chem Sci ; 13(37): 11140-11149, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36320485

RESUMEN

Small-molecule near-infrared (NIR) imaging facilitates deep tissue penetration, low autofluorescence, non-invasive visualization, and a relatively simple operation. As such it has emerged as a popular technique for tracking biological species and events. However, the small Stokes shift of most NIR dyes often results in a low signal-to-noise ratio and self-quenching due to crosstalk between the excitation and emission spectra. With this research, we developed a NIR-based fluorescent probe WD-HOCl for hypochlorous acid (HOCl) detection using the NIR dye TJ730 as the fluorophore, which exhibits a large Stokes shift of 156 nm, with no crosstalk between the excitation and emission spectra. It contains acyl hydrazide as the responsive group and a pyridinium cation as the mitochondria-targeting group. The fluorescence intensity of WD-HOCl was enhanced by 30.1-fold after reacting with HOCl. Imaging studies performed using BV-2 cells indicated that WD-HOCl could be used for endogenous HOCl detection and imaging in living cells exposed to glucose and oxygen deprivation/reperfusion. Finally, we demonstrated that inhibiting the expression of NOX2 reduced the HOCl levels and the severity of oxidative stress during stroke in a mouse model.

5.
Chem Sci ; 13(18): 5363-5373, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35655567

RESUMEN

Over recent years, fluorescent probes exhibiting simultaneous responses to multiple targets have been developed for in situ, real-time monitoring of cellular metabolism using two photon fluorescence sensing techniques due to numerous advantages including ease of operation, rapid reporting, high resolution, long visualization time and being non-invasive. However, due to interference from different fluorescence channels during simultaneous monitoring of multiple targets and the lack of ratiometric capability amongst the available probes, the accuracy in tracing metabolic processes has been restricted. With this research, using a through-bond energy transfer (TBET) mechanism, we designed a viscosity and peroxynitrite (ONOO-) mitochondria-targeting two-photon ratiometric fluorescent probe Mito-ONOO. Our results indicated that with decreasing levels of mitochondrial viscosity and increasing levels of ONOO-, the maximum of the emission wavelength of the probe shifted from 621 nm to 495 nm under 810 nm two-photon excitation. The baselines for the two emission peaks were significantly separated (Δλ = 126 nm), improving the resolution and reliability of bioimaging. Moreover, by ratiometric analysis during oxygen-glucose deprivation/reoxygenation (OGD/R, commonly used to simulate cell ischemia/reperfusion injury), the real-time visualization of the metabolic processes of autophagy and oxidative stress was possible. Our research indicated that during cellular oxygen-glucose deprivation/reoxygenation, cells produce ONOO-, causing cellular oxidative stress and cellular autophagy after 15 min, as such Mito-ONOO exhibits the potential for the monitoring and diagnosis of stroke, as well as providing insight into potential treatments, and drug design.

6.
ACS Appl Bio Mater ; 5(5): 2296-2306, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35413186

RESUMEN

In this paper, unsaturated collagen microspheres (CMA-Cr/ST) were constructed from vinyl collagen (CMA, which is from leather solid waste) and chromium/synthetic tannins (Cr/ST) through hydrogen and coordination bonds and grafted on polyamide nonwoven fiber by thiol-ene click chemistry to improve the moisture absorption and permeability of nonwoven. The results showed that when the quality ratio of CMA to Cr/ST was 1:1, the magnetic stirring time was 20 min with 250 rpm at room temperature, the surface and particle size distribution of the obtained microspheres were smooth and relatively uniform, and the average particle size was 2-3 µm. When the concentrations of the microspheres and the initiators were 6 and 0.006 wt %, the irradiation time was 4 h and the grafting rate of CMA-Cr/ST on the surface of polyamide fibers would reach 31.3%. The moisture absorption and permeability of the obtained microsphere-modified polyamide nonwoven fiber (CMA-Cr/ST-S-PA) were increased. It was found that the collagen microspheres were firmly modified on the polyamide fibers by moisture and heat resistance, wash resistance, and solvent resistance studies.


Asunto(s)
Cromo , Nylons , Cromo/química , Colágeno , Hidrógeno , Microesferas
7.
Chem Sci ; 13(10): 2992-3001, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35382463

RESUMEN

Ferroptosis is closely associated with cancer, neurodegenerative diseases and ischemia-reperfusion injury and the detection of its pathological process is very important for early disease diagnosis. Fluorescence based sensing technologies have become excellent tools due to the real-time detection of cellular physiological or pathological processes. However, to date the detection of ferroptosis using reducing substances as markers has not been achieved since the reducing substances are not only present at extremely low concentrations during ferroptosis but also play a key role in the further development of ferroptosis. Significantly, sensors for reducing substances usually consume reducing substances, instigating a redox imbalance, which further aggravates the progression of ferroptosis. In this work, a H2S triggered and H2S releasing near-infrared fluorescent probe (HL-H2S) was developed for the high-fidelity in situ imaging of ferroptosis. In the imaging process, HL-H2S consumes H2S and releases carbonyl sulfide, which is then catalyzed by carbonic anhydrase to produce H2S. Importantly, this strategy does not intensify ferroptosis since it avoids disruption of the redox homeostasis. Furthermore, using erastin as an inducer for ferroptosis, the observed trends for Fe2+, MDA, and GSH, indicate that the introduction of the HL-H2S probe does not exacerbate ferroptosis. In contrast, ferroptosis progression was significantly promoted when the release of H2S from HL-H2S was inhibited using AZ. These results indicate that the H2S triggered and H2S releasing fluorescent probe did not interfere with the progression of ferroptosis, thus enabling high-fidelity in situ imaging of ferroptosis.

8.
RSC Adv ; 12(6): 3654-3661, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35425343

RESUMEN

As a disease with high incidence, mutilation, and fatality rates, diabetic ulcers (DUs) have become a difficult and complicated disease of widely concern in recent years due to the unclear healing mechanism. The main reason for the delayed healing in DU patients is the unduly long chronic inflammation window, and the polarization state of macrophages plays a key role in this process. Since autophagy is believed to be closely related to the polarization trend of macrophages, recent studies have shown that autophagy is closely related to the healing of DU. To this end, a lysosome-targeting polarity-sensitive probe, XZTU-VIS, was developed to monitor the changes in lysosomal polarity, thereby assessing the autophagy of macrophages in mice suffering from DU. The experimental results showed that under two-photon fluorescence microscopy, the green channel fluorescence signal of XZTU-VIS decreased significantly during autophagy. In the meantime, DU models established using BV-2 cells and mice showed a process that could cause inflammation and the release of ROS, thereby inducing autophagy.

9.
Int J Biol Macromol ; 206: 699-707, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35259433

RESUMEN

Recycling uranium from seawater is of great significance to the development of nuclear industry. However, due to high salinity and low uranium concentration in seawater, there are still many challenges in current seawater uranium extraction technology. In this study, waste feather fibers (FF) were used as raw materials to develop a phosphonate-functionalized feather fiber (FF-PT). The study on the adsorption performance shows that FF-PT have good adsorption and recycling performance for uranium. The study on the adsorption performance shows that FF-PT have good adsorption and recycling performance for uranium. The adsorption capacity reaches up to 342.5 mg·g-1 in the 8 ppm uranium solution, and service life of at least 10 cycles were obtained. In addition, in the environment with high salinity and the coexistence of metal competitive ions, FF-PT also shows excellent selectivity, and it can reach 3.22 mg·g-1 adsorption capacity after immersed in natural seawater for 30 days. Combined with the results of economic analysis, we believe that the FF-PT has broad application prospects in the industrialized uranium extraction from seawater.


Asunto(s)
Uranio , Adsorción , Animales , Plumas , Agua de Mar
10.
J Hazard Mater ; 417: 126130, 2021 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-34229397

RESUMEN

Novel composite foam (CMCTS-PUF-s) was prepared by immobilizing carboxymethyl chitosan (CMCTS) on polyurethane foam (PUF) in which amino groups in CMCTS reacted with isocyanate groups in polyurethane prepolymer. The adsorption capacity of the optimal composite foam (CMCTS-PUF-5) reached to 118.2 mg/g with 5% CMCTS loading. The removal rate to methylene blue (MB) was up to 97.1%, which was obviously higher than 18.9% of PUF. After recycling for five times, the removal rate still reached 83.2%, which strongly proved the excellent reusability of immobilizing CMCTS modified PUF. The characterization results of FTIR and TG showed that CMCTS was well loaded on PUF by covalent bond. The Young's modulus and tensile strength of CMCTS-PUF-5 were increased by 252% and 97% compared with that of PUF. MIP characterization result showed the porosity of CMCTS-PUF-5 was 73.99% and the pore sizes were mainly distributed between 50 and 150 µm, which provide sufficient diffusion channels and active sites for MB dyes. The adsorption kinetics and isotherm proved pseudo-second-order kinetic model and Langmuir isotherm model could well describe the adsorption process of CMCTS-PUF-5. Therefore, CMCTS-PUF-s presents excellent recoverability, high stability and attractive adsorption efficiency, shows the potential application in future treatment of dye wastewater.


Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Adsorción , Cinética , Azul de Metileno , Poliuretanos
11.
Analyst ; 146(14): 4659-4665, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34190222

RESUMEN

A polarity-sensitive fluorescence probe AMN was developed to demonstrate the role of autophagy inhibitory drugs in the process of leather residue-induced neuroinflammation, promoting the knowledge of the relationship between autophagy and neuroinflammation. AMN showed a turn-on fluorescent signal in the process of autophagy inhibition via two-photon confocal imaging, which is different from the current popular autophagy probes. Therefore, AMN can offer high-sensitive imaging analysis of the autophagy inhibition process to better understand the role of autophagy in the process of neuroinflammation. The model of scrap leather-induced neuroinflammation using PC12 cells demonstrated that neuroinflammation can induce autophagy by releasing reactive oxygen species (ROS), and autophagy can alleviate neuroinflammation significantly via ROS scavenging.


Asunto(s)
Autofagia , Fotones , Animales , Colorantes Fluorescentes , Células PC12 , Ratas , Especies Reactivas de Oxígeno
12.
Analyst ; 146(8): 2632-2637, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33660731

RESUMEN

This study reports the development of a new, pH-sensitive, mitochondria-targeting two-photon ratiometric probe (Mito-BNO) for real-time tracking of mitophagy, a process that can be accelerated in brain tissue during stroke. Mito-BNO shows excellent capability for mitochondrial localisation (Pearson's correlation coefficient, r = 0.91), and can also effectively distinguish mitochondria from other subcellular organelles such as lysosomes and the endoplasmic reticulum (r = 0.40 and r = 0.33, respectively). Meanwhile, a rewarding pKa value (5.23 ± 0.03) and the pH reversibility suggest that Mito-BNO can track mitophagy in real time via confocal imaging. Most importantly, the relationship between mitophagy and neuroinflammation during stroke has been successfully demonstrated by evaluating the fluorescence of PC12 cells stained with Mito-BNO during an oxygen-glucose deprivation/reperfusion (OGD/R) process with and without anti-inflammatory treatment. The results indicate that the occurrence of mitophagy during stroke is caused by oxidative stress induced by neuroinflammation. This study will help further understanding stroke pathogenesis, can provide potential new targets for early diagnosis and treatment, and can also help to develop therapeutic drugs for stroke.


Asunto(s)
Mitocondrias , Mitofagia , Accidente Cerebrovascular , Animales , Inflamación/metabolismo , Lisosomas/metabolismo , Ratas
13.
Food Sci Biotechnol ; 27(3): 705-713, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30263796

RESUMEN

A bacterial cellulose (BC) synthesizing strain (Gluconacetobacter xylinus ZHCJ618) was isolated from kombucha and selected as the species for commercial applications owing to its high phenotypic stability and sustainable production capacity of 7.56 ± 0.57 g/L under static culturing conditions and 8.31 ± 0.79 g/L under shaking conditions. The morphological, physiological and biochemical characteristics of the strain were similar to those of Gluconacetobacter genus. The 16S rDNA sequence homologies with G. xylinus NCIB 11664 reached 99%, showing that the isolated strain can be identified as G. xylinus. The material properties of BC were studied by fourier transform infrared spectroscopy, scanning electronic microscopy, X-ray diffraction, thermogravimetric analysis, and tensile test. The results showed that BC synthesized under static conditions exhibited stronger tear strength, higher crystallinity, superior waterhold and rehydration rate than BC synthesized under shaking conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...